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In this work we demonstrate, by means of numerical simulations, the possibility of replicating matter-wave
vortices in a Bose-Einstein condensate trapped in a double-well potential. The most remarkable result is the
generation of replicas of an initial vortex state located in one side of the double potential, which evolves into
two copies, each one located in one of the potential minima. A simple linear theory gives the basic explanation
of the phenomenon and predicts experimental realistic conditions for observation. A complementary strategy of
easy experimental implementation to dramatically decrease the replication time is presented and numerically
tested for the general case of nonlinear atomic interactions.
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I. INTRODUCTION

The behavior of topological defects in a medium with a
broken symmetry is of fundamental interest in superconduc-
tivity, superfluidity, and nonlinear optics. In a wave field,
vortices can be generated by several means, which include
rotation of an anisotropic potential �1,2� or phase imprinting
methods �3� in the case of trapped ultracold atomic gases.

Most of the literature in relation with vortices in Bose-
Einstein condensates �BEC� in gases is devoted to static
properties such as lattices �4,5� or fluctuations around a fixed
position �6,7�. Less attention has been paid to moving vorti-
ces as it is intrinsically difficult to control the vortex path in
usual experiments. The problem of vortex motion on gradu-
ally varying backgrounds can be studied analytically using
the method of matched asymptotic expansions �8�. Unfortu-
nately, there is no universal mobility relation so the detailed
asymptotic expansion procedure has to be carried out for
each particular system �9�.

In the present work we will study vortex motion through a
double-well structure, which is an important and well-known
technique in BEC setups that has been used to study, among
other experiments, Josephson junctions �10–12� and matter-
wave interference phenomena �13–15�. We will demonstrate
by means of numerical simulations the possibility of tunnel-
ing matter-wave vortices in a Bose-Einstein condensate
trapped in a double-well potential. The most remarkable ef-
fect found is the possibility of generating replicas of an ini-
tial vortex state �located in one side of the double potential�,
which can be made to evolve into two copies, each one lo-
cated in one of the potential minima. A simple linear theory
gives the basic explanation of the phenomenon and predicts
experimental realistic conditions for observation. Our results
generalized the particular problem of replicating a funda-
mental BEC state to the case of vortices, opening the door to
experiments which are easy to implement with the current
technology.

We will consider a planar condensate, i.e., strongly con-
fined in the Z direction by an harmonic potential Vz

=m�z
2Z2 /2, m being the atom mass and �z the trapping fre-

quency, so that it can be considered effectively two dimen-
sional. In this situation we can describe the dynamics of the
condensate as given by a wave function ��r , t�, dependent
on the spatial variables r= �X ,Y ,Z� and time t, which can be
factorized in the form �16� ��r , t�=�0�Z���X ,Y , t�. We de-
fine a time variable �=�zt, so that it is now measured in units
of the inverse of the trapping frequency �z, and also normal-
ized spatial variables after rescaling by the cloud size along
z, �x ,y ,z�= �X ,Y ,Z� /rz, being rz=�� / �2m�z�. We also define
a dimensionless wave function ��x ,y ,��=rz��X ,Y , t�, which
should satisfy

i
��

��
= − ��

2 � + V�x,y�� + 	���2� , �1�

where ��
2 is the Laplace operator in the �x ,y� plane, V�x ,y�

is the double-well potential measured in units of ��z, and
	=8
a /rz is the effective atomic interaction coefficient
given by the s-wave scattering length a.

II. LINEAR DOUBLE-WELL TUNNELING THEORY

We initially consider a linear regime �	=0� which is pos-
sible to obtain by properly adjusting the Feshbach reso-
nances, and take a two-dimensional potential consistent in a
double well with a shape given by two displaced Gaussian
functions,

V�x,y� = − Vl exp�−
�x − d/2�2 + y2

wl
2 �

− Vr exp�−
�x + d/2�2 + y2

wr
2 � , �2�

where Vl and Vr are the depth and wl and wr the width of
each well of the potential and d the separation between them.
This configuration can be easily achieved with an optical
dipole trap generated with a CO2 laser beam �17,18�. Such a
potential supports stationary states or modes of the form
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��x ,y ,��= f�x ,y�exp�−i���, where � is the energy of the
state and f�x ,y� is a real-valued function only dependent on
the spatial variables, which satisfies

�f = − ��
2 f + V�x,y�f . �3�

We are interested in the modes having one nodal line located
at the position of each of the wells, since in that case an
appropriate linear combination of those states originates
vortex-type states of the lowest vorticity, �=1, on each of the
separate wells. As it is known, due to symmetry reasons,
there are only four modes with a unique nodal line on each
well position, forming a set that we denote as D
= 	�f1
 , �f2
 , �f3
 , �f4
� and plot in Fig. 1. These modes are
nondegenerated due to the breaking of the O�2� symmetry
into a C2v symmetry produced by the double well. In spite of
this symmetry lift, it is still possible to build vortex-type
states choosing suitable linear combinations. In fact, there

are four vortex-type states given by the following combina-
tions of the basis states of set D:

�l+
 = �1/2���f1
 + i�f2
 + i�f3
 + �f4
� , �4�

�l−
 = �1/2���f1
 − i�f2
 − i�f3
 + �f4
� , �5�

�r+
 = �1/2��− �f1
 + i�f2
 − i�f3
 + �f4
� , �6�

�r−
 = �1/2��− �f1
 − i�f2
 + i�f3
 + �f4
� . �7�

In the above expressions we have denoted as l and r the
states with a vortex in the left and right well, respectively,
and as +�−� those with positive �negative� vorticity. In order
to illustrate the construction of these vortex states we have
plotted in Fig. 2 the modulus and phase of such linear com-
binations, showing each one a single vortex located in one of
the wells, as well as a negligible remanent on the other well.

Since the states forming the basis set are nondegenerated,
those linear combinations are not stationary states and
change with time in a complex way. The spectrum of states
with angular momentum �=1 for two infinitely separated
potential wells is formed by the degenerated quadruplet
�l�
 , �r�
. As the distance between the wells decreases, the
degeneracy becomes broken and first-order degenerated per-
turbation theory applies, resulting that the time evolution of
the field can be described at any instant � as a linear combi-
nation of the states of the basis set D, �����
=c1����f1

+c2����f2
+c3����f3
+c4����f4
, where the time-dependent
coefficients are cj���=cj�0�exp�i� j��, � j being the energy of
the state �f j
.

The system evolution will reach a double vortex or what-
ever desired final state �u
 at some particular instants, for
which the condition ��u ��
�=1 is fulfilled, assuming that
both fields are normalized. As an example, we will focus on
the case of obtaining a double vortex with opposite vorticity,
i.e., the final state �u
=exp�i���l+
− i�r−
� /�2, where
exp�i� is a global arbitrary phase factor. Besides, if we start
with a single vortex in the left core ���0�
= �l+
, the projec-
tion on the final desired state will produce,

FIG. 1. �Color online� The four stationary states or modes sup-
ported by a double well with Gaussian profile, presenting a nodal
line on each of the wells. Subfigures �a�–�d� correspond to station-
ary states �f1
– �f4
. Dashed lines indicate the well border measured
at the points where the amplitude is 1 /e of the minimum. Zones in
red-blue tones �dark gray� are positive lobes while those in red-
yellow-green tones �bright gray� correspond to negative lobes.

FIG. 2. �Color online� Vortex-type states constructed as linear combinations of the four modes of the double-well potential presenting a
nodal line. �a-b� shows the amplitude for the combinations resulting in a vortex on the left well ��l+
 and �l−
� and the right well ��r+
 and
�r−
�, respectively. Subfigures �c�–�f� show the phase distribution for the different states �l+
, �l−
, �r+
, and �r−
, respectively.
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��u�����
� = �1/4��exp�i�1�� + exp�i�2�� + i exp�i�3��

+ i exp�i�4��� , �8�

and will be identically the unity when the following condi-
tions are simultaneously satisfied:

�1� = �2� + q�2
� , �9�

�1� = �3� + �4r + 1��
/2� , �10�

�1� = �4� + �4s + 1��
/2� , �11�

being q ,r ,s�Z. These equations can be written as

4q

4r + 1
=

�1 − �2

�1 − �3
= � , �12�

4q

4s + 1
=

�1 − �2

�1 − �4
= � , �13�

so that, in order that the conditions can be fulfilled, it is
required that the quotients above are rational numbers. This
is always met when the energies are obtained numerically,
but even in the case they were irrational it is always possible
to find a rational number as closest as desired. This analysis
demonstrates that an instant where the final state is obtained
always exists provided that the potential parameters make
the wells to support the first excited azimuthal state �vortex�,
although it may happen for a very long evolution time. Nev-
ertheless, a perfect match of the desired state is not requested
in practice, just being enough reaching a projection value
little lower than unity.

III. NUMERICAL SIMULATIONS

In order to confirm the theory developed in the previous
section, we have performed a set of simulations, propagating
a vortex initially located at one of the potential minima, ��0
,
by means of a finite-difference Crank-Nicolson algorithm. In
principle we can chose one of the linear combinations given
by Eqs. �4�–�7� as a starting field. Nevertheless, in order to
be more realistic, we chose a stationary state of a single-well
�Gaussian� potential located on one of the well positions.
This state is not a stationary state of the double-well poten-
tial and consequently a slightly matter leak is produced at the
beginning of the propagation. Due to the weak coupling be-
tween both wells, the matter expelled is, however, negligible
and the use of transparent boundary conditions allow to get
rid of it through the domain edges avoiding further interfer-
ence. A simple Gaussian vortex profile of the same width as
the potential well would also work fine instead of the single-
well stationary state.

We will focus on the particular case of obtaining a repli-
cation of the initial vortex with opposite vorticity, though
every other final state could be searched for. In that way, the
normalized fields centered at each potential minima for the
final state should be �ul
= ��0
= ��1
+ i��2
 and �ur
= ��1

− i��2
, where ��1
 and ��2
 are the two degenerated dipole
states of the single well. For these and all further simulations

we took the values Vl=Vr=0.5, wl=wr=5, and d=15 for the
potential parameters, which assure that the wells support the
first-order azimuthal excited state �vortex�. The evolution
was tracked by evaluating at each step how similar is the
present state to the one we would eventually like to achieve.
In order to quantify this similarity we consider the probabil-
ity of finding the desired vortex at each potential minima,
projecting the propagating field over the desired states Pl,r
= ��ul,r ��
�2. The probability of simultaneously forming a
vortex in both potential wells is consequently described by
the joint probability,

� = P�ul � ur� = P�ul�P�ur� = ��ul��
�2��ur��
�2. �14�

We regard � as the replication parameter, valued between 0
and 1.

In Figs. 3�a� and 3�b� parameter � is plotted as a function
of the normalized evolution time, �, for two different values
of the well separation d. The shape is a succession of peaks
each one reaching a different value. A reasonable rate of
replication is achieved for ��0.9 as shown in the snapshots
of Fig. 3�c�, corresponding to the highest peaks which over-
pass such value, the result having a particular good appear-
ance for the peak labeled B, which reaches almost the unity.
Comparing both graphs for the two different values of d, it
can be appreciated that basically they present the same
peaks, but located at different positions on the � axis �shifted
to earlier times� and reaching different values. This fact en-
courages to make a study of the behavior of parameter � as
a function of the separation of the two potential minima to
determine if the replication may take place for shorter evo-
lution times.

In Fig. 4 the � position for three of the peaks in Fig. 3 and
the peak value of parameter � is plotted as a function of the
well separation. Figure 4�a� confirms the shift of the peaks to
lower evolution times when the two potential maxima get
closer, and Fig. 4�b� shows that for each of the peaks there is
a value of d which gives rise to a maximum value of � at
some instant. In that way, acting on the well separation d
allows us to modify and determine the instant at which we
obtain the desired result. Even so, the necessary evolution
time is generally too long compared with the typical mean
life of the condensate, and also the instant for which the
replication is obtained is so critical that the replicated state is
quickly lost in the subsequent well separation process.

It is worth a brief remark about the flux conservation in
this system, which is directly related to the winding number
defined as the contour integral along a closed curve contain-
ing the condensates. Its conservation in discrete-symmetry
media, like the double-well potential, is still an open ques-
tion. The winding number can be related to a quantity called
angular-pseudomomentum �19,20� which is connected with
the symmetry order of the system. For states with well-
defined angular-pseudomomentum, we showed numerically
that both the winding number and the angular-
pseudomomentum are conserved �19,21,22�. However, the
initial state composed by a single-charged vortex has a well-
defined winding number but not a well-defined angular-
pseudomomentum. Consequently, the conservation of the
winding number, or equivalently the total flux, cannot be
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assured. Further numerical and theoretical analysis is yet to
be done to address this question.

IV. FAST REPLICATION, SEPARATION, AND
RECOVERING

In order to separate both vortices generated at each poten-
tial minima a potential barrier is initially placed between
them to stop matter tunneling. Then, a process of adiabatic
separation of the potential wells is carried out, slightly

changing the potential at each propagation step, so that both
wells maintain the shape but increase the separation slowly.
This slow �or adiabatic� separation is necessary to assure that
the vortices are trapped in the well minima at all times. The
separation of the vortices is performed up to a position where
they are far away enough to stop matter transfer and only
then the potential barrier is removed. This strategy avoids
matter transfer during the process but introduces perturba-
tions in the potential which make the phase between the two
dipole states of each vortex to evolve, destroying the desired
vortex structure. Nevertheless, since the perturbations affect
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only to the relative phase and not to the atom-density distri-
bution between the dipoles, vortices are easy to recover by
inducing a small distortion in each of the potential wells, say,
making them slightly elliptic instead of cylindrically sym-
metric. This asymmetry makes the dipoles nondegenerated
states of the single well and an evolution with different char-
acteristic energies is produced. Consequently, the relative
phase also evolves and it can be monitored up to the point
where it reaches the value 
 /2. At this point the cylindrically
symmetric shape of the wells is restored and consequently
the relative phase evolution stops and the final replicated
vortices are obtained.

This possibility of recovering the vortex states is the key
to achieve the desired replication in a much faster way. In
fact, achieving exactly replicated vortices is unnecessary be-
fore starting the well-separation process, since the vortex
states can be subsequently regenerated from other field struc-
tures by means of the deformation of the single-well poten-
tials. There are only two necessary conditions to meet at the
end of the evolution process. First, the matter should be
equally distributed between each potential minimum and sec-
ond, the matter at each minimum should be equally distrib-
uted between both dipole states. Besides, the latter condition

can be always fulfilled provided each elliptic well is estab-
lished with the suitable axes orientation to match the nodal
lines of the dipole basis set. We remark that all these comple-
mentary techniques to split and recover the vortices are easy
to implement experimentally.

To demonstrate the effectiveness of these combined tech-
niques for vortex replication, in Figs. 5 and 6 we show the
results of a simulation performed for a most general case of
a nonlinear regime �	=1�. In Fig. 5�a�, the matter density at
both potential minima as well as the replication parameter �
are plotted. Figure 6 shows real time values for the case of a
rz=1 �m thick condensate made of Rb atoms. The matter
tunneling process is stopped at instant �1 �Fig. 6�c��, when
the matter density is approximately equidistributed between
both wells. At this instant, a potential barrier �amplitude 20,
width 0.5� is established between the wells to stop matter
transfer as can be seen in Fig. 5�a� and the wells start to be
adiabatically separated. The well separation completes at in-
stant �2 �Fig. 6�d��. At this instant, the barrier is suppressed,
and each well is distorted into an elliptic shape �eccentricity
0.4� between instants �2 and �3 to recover the 
 /2 phase
between dipole states and consequently the vortex structure
at �3 �Fig. 6�e��. This is possible for this particular case if the
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FIG. 6. �Color online� Se-
quence of different photograms
showing a vortex replication in
nonlinear regime. �c�, �d�, and �e�
correspond to times �1, �2, and �3,
respectively in Fig. 5. Overprinted
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ellipse axes coincide with the Cartesian ones, since the mat-
ter density is equally distributed between both associated di-
poles, as is seen in Fig. 6�d�. The phase evolution for each
vortex is shown in Fig. 5�b� where the relative phase be-
tween dipoles is plotted for both potential wells. At instant �3
the cylindrical symmetry of the potential wells is restored
and the vortices remain stable from that point on. The plots
show the evolution up to fairly later times to account for this
�Fig. 6�f��. It is important to notice that the 50% matter trans-
fer to the second well is even achieved at earlier times than
�1 as shown in Fig. 5�a� �points at which both density lines
cross� and the vortices could be restored from those
points—as for example from the instant shown in Fig.
6�b�—if the ellipticity induced in each well potential is tuned
to have the adequate axes orientation for both single-well
dipoles to equally share the matter density.

V. CONCLUSIONS

We have determined the analytically conditions in the lin-
ear regime for splitting a Bose-Einstein condensate vortex,

initially located in one minimum of a double well, into two
equal vortex copies each located in different minima or
whatever final state that was desired. The replication tech-
nique has been demonstrated in a nonlinear general case with
numerical simulations and complemented with a vortex-
recovering strategy, consisting in an easy and experimentally
feasible modification of the potential shape that allows to
dramatically decrease the replication time.
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